If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+20x-567=0
a = 1; b = 20; c = -567;
Δ = b2-4ac
Δ = 202-4·1·(-567)
Δ = 2668
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2668}=\sqrt{4*667}=\sqrt{4}*\sqrt{667}=2\sqrt{667}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{667}}{2*1}=\frac{-20-2\sqrt{667}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{667}}{2*1}=\frac{-20+2\sqrt{667}}{2} $
| 197=45-y | | X•(x+4)=80 | | 4x+12-4=10x+6 | | 10m^2-42m-8=0 | | X•(x+4=80 | | 1/3+x=180 | | 2x/(x-2)=7.4 | | 10m^-42m-8=0 | | 4(x+3)-4=10x-6 | | 4(2-3x)+7(x-1)=182 | | -4(3x3+3)=-96 | | x/4+x=-3+x/2 | | x,90,16.5=180 | | -1/5c+2+c=1/5(10c-20) | | 66+69+x=180 | | -8.6=-6g | | 6y-2=3y+22 | | 4x+6=2×+8 | | 6.25x-1/4x+2.25+7.3x=0 | | 73*2+x=180 | | 3n+8-2n+4n+10=n-4+10 | | x+1/2x+x-5=180 | | x+8/9=x-2/8 | | x+1/2x+(x-5)=180 | | 1/4(6x+2)-3=-1/2-4+2x | | 1/5(x-6)=3 | | 5(8*1-3y=11) | | 12.5x=112.50 | | 7x-6+2x+11.2=180 | | -5=12+4(2x-2)-6 | | 3(7*3-2y=13) | | 5/12x=1/15-11/14 |